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1. INTRODUCTION

In the electrothermal-chemical (ETC) gun, an electricaly generated high-pressure, high-temperature

plasma interacts with a propellant (working fluid) in the combustion chamber to provide propulsive gases

for the projectile. As shown in Figure 1, an ETC system consists of a power supply, pulse-forming

network, switches, the plasma capillary, the combustion chamber in which the plasma and propellant

interact, and the gun tube/projectile. A number of propellants have been proposed for the ETC gun

including liquids, gels, slurries, and solids.

Plasma
Cartridge

Reaction / Combustion
{Switching Chamber BarrelSProjectile Bre

Pulse Forming Intermediate
Network (PFN) Storage Prime Power

Capacitors Batteries

Figure 1. Schematic of ETC Gun.

Although the ETC propulsion system is often implemented with a novel propellant formulation to

exploit the potential for high volumetric energy density and low molecular weight products, the

introduction of an electrically generated plasma into a solid propellant has been proposed and, in fact,

initial>.v tested (SOREQ 1991). Proponents of introducing plasma energy into the breech of a traditional

solid propellant gun expect the plasma to serve two functions: 1) perform as the igniter for the solid

propellant, and 2) increase the projectile muzzle kinetic energy (KE) by providing an additional energy

source to the propulsive gases. In this report, the feasibility of the second potential role of the electrically

generated plasma in a solid propellant gun is explored.



In the implementation discussed in this report, electrical energy (EE) in the form of a plasma is

introduced into the breech of the gun at and after the time of maximum chamber pressure. In this

scenario, the electrical energy serves to maintain the maximum breech pressure and, hence, the space-mean

pressure and the base pressure for some time period after maximum chamber pressure due to the solid

propellant alone. It is further assumed, in this report, that the solid propellant is ignited conventionally.

Finally, it is also assumed that ideal "lossless" conditions exist after maximum breech pressure and that

the electrical pulse can be appropriately shaped to deliver the desired pulse shape to maintain maximum

breech pressure. ("Lossless" is interpreted to mean that no additional losses will occur over the baseline

calculation.) It has been shown (Morrison et al., to be published) that traditional pressure gradient

relationships are appropriate for ETC gun modeling. Thus, using the Lagrange gradient (Comer 1950)

and isentropic flow relations, it is possible to derive a closed-form solution for the amount of electrical

energy required after maximum pressure to attain various performance regimes in terms of maximum

pressure and muzzle velocity, as well as to determine the percentage of electrical energy converted to

projectile kinetic energy.

2. BASELINE SOLID PROPELLANT ONLY RESULTS

The gun specification used for the solid propellant only baseline case is given in Table I. In the

table, the propellant L/D is the length to diameter ratio of the propellant grains, and D/Dp is the ratio of

the outside diameter to the perf diameter. The propellant mass and web are determined by optimizing

muzzle velocity with the maximum breech pressure constraint using the lumped parameter interior ballistic

code IBHVG2 (Anderson and Fickie 1987; Baer 1991).

The baseline optimal muzzle velocity computed by IBHVG2 for the totally solid propellant gun is

1,654 m/s. The total chemical energy available from the solid propellant is 8,303,941 J. Conditions at

muzzle exit and at maximum chamber pressure (optimized solid) needed in the calculati Y, ai • shown in

Table 2.

3. MAXIMUM PERFORMANC, ESTIMATES

In order to provide an upper bound on gun performance in mule velocity or kinetic energy, given

a breech pressure constraint, it is assumed that electrical energy is added to the breech starting at the time

of maximum chamber pressure and continued until projectile exit to maintain the chamber, and hence the
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Table 1. Gun Parameters

Maximum Projectile Travel 3.864 m

Chamber Volume 2,130 cm3

Bore Diameter 60 mm

Propellant Mass 1.851 kg

Propellant M30, 7-perf

Propellant Geometry L/D = 2.095
D/Dp = 11.077

Maximum Chamber Pressure 475 MPa

Projectile Mass 1.354 kg

Table 2. Conditions at Muzzle Exit and Maximum Chamber Pressure Using M30,
7-Perf.

Muzzle Exit Maximum Chamber Pressure

Projectile Velocity = 1,654 m/s Projectile Travel: 0.4111 m
Projectile KE = 1,851,011 J Projectile Velocity = 670 m/s
Gas KE = 908,601 J Base Pressure: 288 MPa
Gas Internal Energy = 5,074,535 J
Losses = 469,794 J
Total Chemical Energy = 8,303,941 J

base, pressure as shown in Figure 2. Figure 2 also shows the solid-propellant-only breech pressure history.

An energy balance at the muzzle is used to determine both the quantity of electrical energy required and

the percentage transferred to projectile kinetic energy. The gun specifications are given in Ta'le 1.

The calculation now proceeds by assuming that electrical energy is added to the breech to maintain

a projectile base pressure of 288 MPa (the value at maximum breech pressure) for the remainder of the

projectile travel. It is assumed that the tube can withstand the base pressure.

The area of bore ".* x(3 cm)2 or 0.0009mn2 . The projectile kinetic energy with constant base pressure

of 288 MPa for the travel after maximum breech pressure, P.. , is

3
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Figure 2. Chamber Pressure Obtained by Addition of Electrical Energy From Maximum
Breech Pressure Until Muzzle Exit, Compared to the Solid-Propellant-Only Breech
Pressure History.

Projectile KE - Pbe Abo * (Xm - Xp)

Projectile KE - (288 •106 Pa) _ 0.0009Um 2 • (3.864 m - 0AII4 I m)

- 288 106 kg •0.0009 m 2 . 3.4529 m
S 2 .-m

- 2,811,700 J, (1)

where X, and XP are projectile position at muzzle exit and maximum pressure, respectively. Projectile

kinetic energy at Pnux = 1/2 (1.354 kg) (670 m/s)2 = 303,905 J. The total projectile kinetic energy is then

(2,811,700 J + 303,905 J) = 3,115,605 J, which gives a projectile muzzle velocity of 2,145 m/s. Hence,

the maximum increase in muzzle velocity over the baseline of 1,654 m/s is 30%, equivalent to a 68%

increase in projectile kinetic energy.
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In order to estimate the amount of electrical energy required to obtain the muzzle velocity of

2,145 m/s, an energy balance is calculated at muzzle exit conditions. The projectile kinetic energy from

above is 3,115,605 J. The gas kinetic energy is calculated from the Lagrange pressure gradient

relationships, that is, gas kinetic energy = 1/3 C/M KEp where C/M is the ratio of the mass of the charge

to the mass of the projectile, and KEp is the kinetic energy of the projectile. Thus, substituting,

Gas KE = 1 (1.851 kg+.15 kg)( 3 ,1 15 ,6 05 J) = 1,534,792 J
3 1.354 kg

It is noted that the charge mass consists of 1.851 kg of main charge and 0.15 kg of black powder igniter.

The gas internal energy is given by

Gas Internal Energy - PV (2)V-1

Using the Lagrange gradient for the space-mean pressure,

I+__1C I+1(1.478)
SC Pb h _1 475 MPa = 408 MPa. (3)

1 +_I-aI 1 +-(1.478)
2M 2

The total volume is the initial chamber volume plus the volume in the tube, or

V - .00213 m 3 + X (0.03 M) 2 (3.864 m) - 0.013 m 3

Therefore, the gas internal energy at muzzle exit is then given by

Gas Internal Energy - 408 106 0.013 . 21,216,000 J.
1.25 - I

Thus, at muzzle exit, the total energy is the sum of projectile kinetic energy, gas kinetic energy, gas

internal energy and losses, or 26,336,354 J. The electrical energy required is the difference between total

energy and chemical energy, or
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EE required = 26,336,354 - 8,303,941 = 18,032,413 J - 18 MJ.

The percentage of electrical energy delivered to the projectile is

A Projectile KE Energy with EE - Energy w/o EE (IBHVG2)

EE added Electrical Energy

= 3,115,605 J - 1,851,011 J . 7% .

18,032,413 J(

Thus, although 18 MJ of electrical energy is required to increase muzzle energy 30% over the baseline

of zero electrical energy, only 7% of the electrical energy is translated into projectile kinetic energy.

4. PERFORMANCE ENHANCEMENT WITH INCREMENTAL ELECTRICAL ENERGY
ADDITION

A pulse power system which will deliver 18 MJ of energy in ballistic timescales is not weaponizable

for tactical Army applications at present. In addition, systems burdens will result from gun tubes and

recoil systems which must be capable of withstanding maximum projectile base pressure for the entire tube

length. Excessive projectile base pressure at muzzle exit is also of concern due to muzzle flash, blast, and

signature. Thus, it is of interest to determine performance enhancement by adding electrical energy to the

breech after maximum pressure for a given portion of the projectile travel as shown in Figure 3. It is also

of interest to determine the percentage of electrical energy converted to projectile kinetic energy as a

function of projectile travel at which electrical energy is terminated.

As in the previous maximum performance case, the solid-propellant-only, optimized, IBHVG2

calculation defines the conditions up to maximum chamber pressure as shown in Table 2. The muzzle

exit conditions in Table 2 define the baseline, optimized solid propellant case. It is then assumed that a

constant breech pressure of 475 MPa is maintained by electrical energy addition until XT , the projectile

position at termination of electrical energy. After the projectile position at XT, the gas expands from XT

to Xm = 3.864 m, where Xm is projectile position at muzzle exit, subject to the following assumptions:

1) adiabatic expansion (no losses), 2) isentropic flow relation along the same adiabatic: PVT = K, a

constant, where P is the space-mean pressure, V is the volume, and y the ratio of specific heats. The

6
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Figure 3. Electrical Energy Addition From Maximum Chamber Pressure Until a Given Projectile Position.

relationship between projectile base pressure and space-mean pressure is given by the Lagrange pressure

gradient relationship,

1bs - P - a - 0.7P-5

(+4.If) 1+ +..(1.478)

3

since the charge mass is 2.001 kg and the projectile mass is 1.354 kg.

The projectile kinetic energy during the gas expansion is given by

Projectile KE - £XPbg.A(x)dx - XMo ~)~~x(6)

7



using Equation 5 to express Pbm. The space-mean pressure at any travel, P(x), is related to the space-

mean pressure at the termination of electrical energy through the isentropic relation. That is,

PT(VT - TIC)*- P(x)[V(x) - lC]•, (7)

where the subscript T denotes conditions at the termination of electrical energy. Substituting for volume

at constant bore area, A,

PT(AXT-nC)T=P(x)[AX -1 C]T , (8)

or

P (AXT- C)Y FT • (9)
(AX - nC)y

Thus, the projectile kinetic energy during expansion is given by

ProjectileKE - -xotP(x)Adx

XA (AXT - TIC)Td-
-Z (AX -dC)y PTdx

Wa(AXT - 'IC)Y PT ( dx
T (AX-TjC)Y

- cx(AXT~ - TC)7 PT (AX - niC)'-y X.A•Il-y) xT
W a(AXT _ '1C)'1, XT

A((

W CE(XT - (1 -7P [A, - 11C) 1-' - (AXT -n (0

It is noted that, in this analysis, all solid propellant must be consumed by XT to satisfy the assumption

of isentropic expansion. Otherwise, the treatment of the expansion regime must consider the presence of

solid propellant particles.
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By way of illustration of the above analysis, to determine the effect of adding electrical energy after

Pmax, assume electrical energy is terminated and that all solid propellant is consumed by XT = 2.0 m, a

valid condition based on IBHVG2 results. At the projectile position, Xm, on reaching maximum

chamber pressure, the projectile velocity is 670 m/s and the projectile kinetic energy is 303,905 J. From

Xm* to XT, the projectile kinetic energy is = 288 1 106 Pa . 0.0009 n 2 . (2.0 m - 0.4111 m), or

1,293,842 J. From XT to Xm the projectile kinetic energy is given by Equation 10 to be 790,065 J. Thus,

the total kinetic energy of the projectile is 303,905 + 1,293,842 + 790,065 = 2,387,813 J. The muzzle

velocity is then calculated from the total kinetic energy to be 1,878 m/s. The increase in muzzle velocity

over the baseline of 1,654 m/s is 13.5%, which corresponds to a projectile kinetic encrgy increase of 29%.

The amount of electrical energy required for the increase in muzzle velocity is based on the energy

balance at muzzle exit. The projectile kinetic energy is 2,387,813 J. The gas kinetic energy using the

Lagrange relationship is

Gas KE 2. KE. .=1(1.478)(2,387,813 J) - 1,176,271 J.
3 M P 3

The gas internal energy = __Vwherey-I

P(Xm) (AXT -1nC)¥ P T - 131 MPa
(AXm TIC)7

in a volume of .023 m3 is

P(XM) •l1 6 pa • 0.013 in 3

Gas Internal Energy - =_______106_p___0.013_M_3s 6,836,711 J.
1.25 - 1

The total energy required is the sum of projectile kinetic energy, gas kinetic energy, gas internal

energy and losses or 10,870,589 J.

The electrical energy needed is the total energy minus the chemical energy (IBHVG2), or 2.6 MJ.

The percentage of electrical energy delivered to projectile is

9



A Projectile KE - Energy with EE - Energy w/o EE (IBHVG2)
EE EE

2,387,813 J - 1,851,011 J
2,568,430 J

- 20.9%.

Thus, supplementing the chemical energy with 2.6 MJ of electrical energy for a small amount of

projectile travel after maximum pressure results in a 13.5% increase in projectile velocity over optimized

solid propellant performance and an electrical energy efficiency of about 21%.

In order to examine the effect of adding electrical energy until an arbitrary projectile position is

reached, the model described above was encoded into a computer program for ease of use. Since the

model assumptions are that isentropic flow takes place after the period of electrical energy addition, it is

essential that solid propellant burning be complete at XT. The IBHVG2 calculation for the optimized solid

propellant charge shows that the solid propellant is consumed by approximately 2.0 m of projectile travel.

Thus, the results of electrical energy addition to maintain the maximum chamber pressure until a projectile

travel of 2.0 m, 2.5 m, 3.0 m, and 3.864 m are shown in Figures 4-7.

In Figure 4, electrical energy added to maintain maximum chamber pressure is shown as a function

of projectile position at electrical energy termination. Since the gas internal energy is the major portion

of the system total energy, and internal energy is directly related to volume in a constant area tube, the

required electrical energy appears as approximately linear.

In Figure 5, muzzle velocity vs. projectile position at electrical energy termination is shown. The

projectile velocity percentage increase over the baseline is shown in Figure 6. Muzzle velocity does

increase with electrical energy addition; however, the relationship is not linear. As shown in Figure 7,

projectile kinetic energy increases more slowly as electrical energy is added for longer projectile travel.

This is due to the fact that the internal energy of the gas is increasing at the rate of four times the volume

increase (since y is 1.25). Figure 8 shows the percentage increase in projectile kinetic energy and reflects

the inefficient use of electrical energy added late in the interior ballistic event.

The percentage of electrical energy transferred to the projectile kinetic energy vs. projectile position

at electrical energy termination is shown in Figure 9. As expected, the highest electrical energy efficiency

10
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Figure 4. Electrical Enermy Addition To Maintain Maximum Chamber Pressure vs. Projectile Position
at Electrical Energy Termination.

.. 2.
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Figure 5. Muzzle Velocity vs. Projectile Posi•ion at ElMctrical Eneriv Termination.
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Figure 9. Eloetical Energv Efficiency vs. Projectile Position at Electrical Enermy Termination.
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occurs when electrical energy is terminated early in the projectile travel. The longer time for gas

expansion allows more energy to be translated to the projectile. It is seen that electrical energy efficiency

drops rapidly with longer electrical energy addition. The most significant portion of available energy

resides as internal energy of the gas in the rapidly expanding volume. In an actual gun, the finite time

for the breech addition of electrical energy to affect projectile base pressure will result in efficiencies

which are even poorer.

5. TEMPERATURE

The Nobel-Abel equation-of-state for the gas is

P(V - TiC) - nRT

where V is the volume of gas, il the co-volume, n the number of moles of gas, R the universal gas

constant, and T the temperature. Since the electrical energy will add a negligible amount of mass and P

and n are constants after all-burnt if the maximum breech pressure is maintained by electrical energy

addition, the average gas temperature is directly related to volume by

T - P(V - TIC)
nR

The main charge has a molecular weight of 23.242 g/tnol, giving 79.64 moles of gas.

Thus, if maximum breech pressure is maintained until muzzle exit, the average gas temperature is

6,242 K. The average gas temperature at the projectile position corresponding to electrical energy

termination is shown in Figure 10. However, local gas temperatures are expected to be even higher since

the plasma temperature is 10,000-20,000 K. Thus, in the case of substantial performance increase, solid

propellant ETC guns will require novel approaches to thermal management.

14
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Figure 10. Average Gas Temperature vs. Projectile Position at Electrical Energy Terminatio..n.

6. CONCLUSIONS

Analytic solution of the thermodynamic and energy equations describing a solid propellant

electrothermal-chemical gun (SPETC) operating under ideal conditions provides an estimate of

performance, performance increase over solid propellant alone, efficiency, electrical energy requirements,

and gas temperatures. The analytic solution utilizes a traditional, lumped parameter, solid propellant

simulation for comparison.

The energy budget for a particular gun is dependent on geometry, solid propellant parameters, and

operating conditions. However, it appears that under the ideal conditions examined in this study of a

60-mm gun, the breech addition of electrical energy to enhance the chemical energy of the solid propellant

can result in significant muzzle velocity increases of up to 30% in the 60-mm system. However, the

quantity of electrical energy required is large (18 MJ for a 30% muzzle velocity increase) and potential

system burdens are great. Mome modest increases in muzzle velocity appear possible with less electrical

15



energy. Thus, significant performance enhancement through the breech addition of electrical energy

appears to be attainable onlv at considerable system burdens in terms of power supply, temperature effects,

tube pressure, and muzzle blast.

Thus, the advantage of SPETC guns may lie in the unique, but unproven, potential of electrical

energy to ignite novel propellants, reduce temperature sensitivity effects of solid propellants, and broaden

the scope of charge design. For example, consolidated charges may be able to be implemented in SPETC

guns. In these scenarios, electrical energy requirements are small since the electrical energy is not used

primarily to supplement the chemical energy of the solid propellant. The analysis explored in this report

suggests that research in SPETC guns should include the role of electrical energy in initiating the interior

ballistic process rather than simply as an additional energy source.
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APPENDIX A:

SAMPLE INPUT AND OUTPUT
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Sample Input for ETSOLID.FOR

2.001 WTCH-CHARGE MASS (KG) 1.851+0.15, INCLUDING IGNITER
1.354 WTPR-PROJECTILE MASS (KG)
0.06 DIAM-BORE DIAMETER (M)
1.25 GAM-GAMMA
0.001048 COVOL-COVOLUME (M^3/KG)
0.023242 RMOLWT-MOLECULAR WEIGHT (KG/MOL)
0.00213 CHVOL-CHAMBER VOLUME (M^3)
3.864 XM-TRAVEL (M)
475. PMAX-MAX CHAMBER PRESSURE (MPA) *** CONDITIONS AT PMAX
288. PBASE-BASE PRESSURE AT PMAX (MPA) [USE 0.0 IF NOT
KNOWN]
670. PRVEL1-PROJECTILE VELOCITY AT PMAX (M/S)
0.4111 PROJECTILE TRAVEL AT PMAX (M)
1654.0 PROJECTILE VELOCITY AT MUZZLE (M/S) ***CONDITIONS AT
MUZZLE
8303941. CHEMEN-CHEMICAL ENERGY AVAILABLE (J)
469794. LOSSES (J)
2.0 XEND-POINT CLOSEST TO MUZZLE FOR EE TERMINATION (M)

21



** ADDITION OF ELECTRICAL ENERGY TO SOLID PROPELLANT **

ELEC ENERGY TERMINATION POINT (M) = 3.8640
TEMPERATURE AT EE TERMINATION (K) - 6241.9
PROJECTILE KE MUZZLE (J) - 3115605.0
GAS KE MUZZLE (J) = 1534792.0
GAS INTERNAL ENERGY (J) - 21291430.0
PROJECTILE VELOCITY WITH EE (M/S) = 2145.24
PROJECTILE VFLOCITY % INCREASE - 29.7
MUZZLE KE % INCREASE - 68.2
ELECTRICAL ENERGY NEEDED (MJ) - 18.11
ELECTRICAL EFFICIENCY (%) - 7.0

ELEC ENERGY TERMINATION POINT (M) - 3.5000
TEMPERATURE AT EE TERMINATION (K) - 5655.6
PROJECTILE KE MUZZLE (J) - 3079216.0
GAS KE MUZZLE (J) - 1516867.0
GAS INTERNAL ENERGY (J) - 18235340.0
PROJECTILE VELOCITY WITH EE (M/S) - 2132.68
PROJECTILE VELOCITY % INCREASE - 28.9
MUZZLE KE % INCREASE - 66.3
ELECTRICAL ENERGY NEEDED (MJ) - 15.00
ELECTRICAL EFFICIENCY (%) - 8.2

ELEC ENERGY TERMINATION POINT (M) - 3.0000
TEMPERATURE AT EE TERMINATION (K) - 4850.4
PROJECTILE KE MUZZLE (J) - 2954810.0
GAS KE MUZZLE (J) - 1455582.0
GAS INTERNAL ENERGY (J) - 14201690.0
PROJECTILE VELOCITY WITH EE (M/S) - 2089.15
PROJECTILE VELOCITY % INCREASE - 26.3
MUZZLE KE % INCREASE - 59.5
ELECTRICAL ENERGY NEEDED (MJ) - 10.78
ELECTRICAL EFFICIENCY (%) - 10.2

ELEC ENERGY TERMINATION POINT (M) - 2.5000
TEMPERATURE AT EE TERMINATION (K) - 4045.1
PROJECTILE KE MUZZLE (J) - 2731307.0
GAS KE MUZZLE (J) - 1345481.0
GAS INTERNAL ENERGY (J) - 10386770.0
PROJECTILE VELOCITY WITH EE (M/S) - 2008.59
PROJECTILE VELOCITY % INCREASE - 21.4
MUZZLE KE % INCREASE - 47.5
ELECTRICAL ENERGY NEEDED (MJ) - 6.63
ELECTRICAL EFFICIENCY (%) - 13.3

ELEC ENERGY TERMINATION POINT (M) - 2.0000
TEMPERATURE AT EE TERMINATION (K) - 3239.8
PROJECTILE KE MUZZLE (J) - 2387813.0
GAS KE MUZZLE (J) - 1176271.0
GAS INTERNAL ENERGY (J) - 6836711.0
PROJECTILE VELOCITY WITH EE (M/S) - 1878.04
PROJECTILE VELOCITY % INCREASE - 13.5
MUZZLE KE % INCREASE - 28.9
ELECTRICAL ENERGY NEEDED (MJ) - 2.57
ELECTRICAL EFFICIENCY (%) - 20.9

22



APPENDIX B:

SOURCE CODE LISTING

23



INT1EWFONAL.LY L.EFF BLANK.

24



PROGRAM ETSOLID
C

IMPLICIT REAL (A-H,O-Z)
CHARACTER*20 FILEIN,FILOUT

C
C USES AS INPUT CONDITIONS IN SOLID PROPELLANT SIMULATION
C THEN DETERMINES INCREASE IN PERFORMANCE BY ADDITION OF
C ELECTRICAL ENERGY TO MAINTAIN MAX CHAMBER PRESSURE
C FOR SOME DISTANCE DOWNTUBE
C

PI-2.*ASIN(I.0)
C
C INITIAL CONDITIONS (KG,M,S)
C

WRITE(*,*)' PLEASE NAME INPUT FILE: '

READ(*,10) FILEIN
WRITE(*,*)' PLEASE NAME OUTPUT FILE: '

READ(*,10) FILOUT
10 FORMAT (A20)

OPEN (12, FILE-FILEIN)
OPEN (14,FILE-FILOUT)

C WTCH-CHARGE MASS (KG)
C WTPR-PROJECTILE MASS (KG)
C DIA-BORE DIAMETER (M)
C GAM-RATIO OF SPECIFIC HEATS
C COVOL-COVOLUME (KG/MA3)
C RMOLWT-MOLECULAR WEIGHT
C CHVOL-CHAMBER VOLUME
C XM-TRAVEL (M)

READ(12,*) WTCH
READ(12,*) WTPRALPHA-I. / (. + (./3. )*WTCH/WTPR)
READ (12, *) DIA
AREA-PI*0.5*DIA*0.5*DIA
READ(12,*) GAM
READ (12, *) COVOL
VOLM-COVOL*WTCH
READ(12,*) RMOLWT
RNMOL-WTCH / RMOLWT
R-8.314
READ(12,*) CHVOL
READ(12,*) XM

C
C CONDITIONS AT PMAX
C
C PMAX-MAXIMUM CHAMBER PRESSURE
C PBASE-PROJECTILE BASE PRESSURE AT PMAX--NOTE: USE 0.0 IF
NOT KNOWN
C PRVEL1-PROJECTILE VELOCITY AT MAX CHAMBER PRESSURE
C PRKEI-PROJECTILE KINETIC ENERGY AT MAX CHAMBER PRESSURE
C XMAX-PROJECTILE TRAVEL AT MAX CHAMBER PRESSURE

READ(12,*) PMAX
READ(12,*) PBASE
CM-WTCH/WTPRPBART-( (I.+ (I./3.)*CM) / (.+ (I./2.)*CM)) *PMAX
READ (12, *) PRVEL1
PRKE1-0.5*WTPR*PRVEL1*PRVEL1
READ(12,*) XMAX
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C
C CONDITIONS AT MUZZLE WITH SOLID PROPELLANT
C
C PRVELS-PROJECTILE VELOCITY AT MUZZLE WITH SOLID PROPELLANT
ALONE
C CHEMEN-CHEMICAL ENERGY AVAILABLE (J) (NOTE: INCLUDING
IGNITER)
C XEND-LAST EE TERMINATION POINT TO CONSIDER (NOTE: ALL
C SOLID PROPELLANT MUST BE CONSUMED)

READ (12, *) PRVELS
PRKES-0.5*WTPR*PRVELS*PRVELS
VOLTOT-CHVOL+AREA*XM
READ (12,*) CHEMEN
READ(12,*) RLOSS
READ(12,*) XEND

C
C TERMINATION POINT OF ELECTRICAL ENERGY BEGINS AT MUZZLE
C

XT-XM
ISTEP-INT (2. * (XM-XEND) +1. ) +1
WRITE (14,200)
DO 100 I-1,ISTEP

C
C TEMPERATURE AT EE TERMINATION (K)
C

TEMP- (PBART*1.E+6* (CHVOL+AREA*XT
COVOL*WTCH) ) / (RNMOL*R)
C
C FROM XMAX TO XT
C
C IF PBASE IS NOT GIVEN, FIND THE VALUE

IF (PBASE .LT. 0.1) PBASE'(I./(1.+(I./3.)*CM))*PBART
PRKE2-PBASE*1.E+6*AREA* (XT-XMAX)

C
C FROM XT TO XM
C

IF ( ABS(XM-XT) .LE. 0.01) THEN
PRKE3-0.0

ELSE
TERM1- (AREA*XM-VOLM) ** (1 .- GAM)
TERM2- (AREA*XT-VOLM) ** (1 .- GAM)
PRKE3"ALPHA* ((AREA*XT-VOLM) **GAM) *PBART*1 E+6*

+ (TERMI-TERM2)/(i.-GAM)
ENDIF

C
C MUZZLE VELOCITY CALCULATION
C

PRKEM-PRKE1+PRKE2+PRKE3
C

PRVELM-SQRT (PRKEM*2./WTPR)
C
C INCREASE IN MUZZLE VELOCITY OVER BASELINE
C

VELINC-PRVELM-PRVELS
C
C PERCENTAGE INCREASE IN MUZZLE VELOCITY
C

VELPER- (VELINC/PRVELS) *100.
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C
C PERCENTAGE INCREASE IN MUZZLE KE
C

RKEPER- ((PRKEM-PRKES)/PRKES) *100.
C
C ENERGY BALANCE AT MUZZLE
C GAS KE
C

GASKE- (1./3.) * (WTCH/WTPR) *PRKEM
C
C GAS INTERNAL ENERGY
C

TERM3- (AREA*XM-VOLM) **GAM
TERM4- (AREA*XT-VOLM) **GAM
PBARM- (TERM4/TERM3) *PBART

C
GASINT-PBARM*1 .E+6*VOLTOT/(GAM-1.)

C
C TOTAL ENERGY REQUIRED
C

ENTOT-PRKEM+GASKE+GAS INT+RLOSS
C
C ELECTRICAL ENERGY NEEDED
C

ELEC-ENTOT-CHEMEN
C
C ELEC IN MJ
C

ELECMJ-ELEC*1.E-6
C
C ELECTRICAL ENERGY DELIVERED TO PROJECTILE (ELECTRICAL
EFFICIENCY)
C

ELECP- ((PRKEM-PRKES)/ELEC) *100.
C
C OUTPUT
C

WRITE (14,201) XT
WRITE(14,202) TEMP
WRITE(14,203) PRKEM
WRITE(14,204) GASKE
WRITE(14,205) GASINT
WRITE(14,206) PRVELM
WRITE(14,207) VELPER
WRITE(14,208) RKEPER
WRITE(14,209) ELECMJ
WRITE(14,210) ELECP

C
200 FORMAT(' ** ADDITION OF ELECTRICAL ENERGY TO SOLID

PROPELLANT **

201 FORMAT(/,' ELEC ENERGY TERMINATION POINT (M)
"' ,F10.4)

202 FORMAT(' TEMPERATURE AT EE TERMINATION (K) -',F1O.1)
203 FORMAT(' PROJECTILE KE MUZZLE (J) -',F15.1)
204 FORMAT(' GAS KE MUZZLE (J) -',F15.1)
205 FORMAT(' GAS INTERNAL ENERGY (J) -',F15.1)
206 FORMAT(' PROJECTILE VELOCITY WITH EE (M/S) -',F10.2)
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207 FORMAT(' PROJECTILE VELOCITY % INCREASE =',F10.1)
208 FORMAT(' MUZZLE KE % INCREASE -',FIO.1)
209 FORMAT(' ELECTRICAL ENERGY NEEDED (MJ) -',F1O.2)
210 FORMAT(' ELECTRICAL EFFICIENCY (%) -',FIO.1)

C
C
C

IF(I .EQ. 1) THEN
IX-INT (XT)
XT-REAL (IX) +0.5
IF (XT .GT. XM) XT-REAL(IX)

ELSE
XT-XT-0.5
IF (XT .LT. XEND) GOTO 500

ENDIF
100 CONTINUE

C
500 STOP

END
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